MathJax | |
"MathJax is a cross-browser JavaScript library that displays mathematical equations in web browsers, using LaTeX math and MathML markup. MathJax is released as open-source software under the Apache license."
|
Tiki20+ | |
Native support was added via https://sourceforge.net/p/tikiwiki/code/68624 and should appear here: https://packages.tiki.org/
|
Before Tiki 20 | |
Copy to clipboard
Copy to clipboard
The other possibility (working in http and https) is to install (copy) the MathJax locally
as described at: http://docs.mathjax.org/en/latest/installation.html
Copy to clipboard
Nice presentation won't load just after you save a page. So after saving, go to another page, and click back to your page Below are math samples copied from http://www.mathjax.org/demos/tex-samples/. Right-click on the formulae for more options.
|
The Lorenz Equations | |
\[\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned} \] |
The Cauchy-Schwarz Inequality | |
\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] |
A Cross Product Formula | |
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \] |
The probability of getting \(k\) heads when flipping \(n\) coins is | |
\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] |
An Identity of Ramanujan | |
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] |
A Rogers-Ramanujan Identity | |
\[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}. \] |
Maxwell's Equations | |
\[ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} \]
|
Related links | |