MathJax | |
"MathJax is a cross-browser JavaScript library that displays mathematical equations in web browsers, using LaTeX math and MathML markup. MathJax is released as open-source software under the Apache license."
|
Tiki20+ | |
Native support was added via https://sourceforge.net/p/tikiwiki/code/68624 and should appear here: https://packages.tiki.org/
|
Before Tiki 20 | |
To include in all pages Copy to clipboard
To include only in one page (choose your own page name) Copy to clipboard
The other possibility (working in http and https) is to install (copy) the MathJax locally
as described at: http://docs.mathjax.org/en/latest/installation.html
For local instalation Copy to clipboard
Nice presentation won't load just after you save a page. So after saving, go to another page, and click back to your page Below are math samples copied from http://www.mathjax.org/demos/tex-samples/. Right-click on the formulae for more options.
|
The Lorenz Equations | |
\[\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned} \] |
The Cauchy-Schwarz Inequality | |
\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] |
A Cross Product Formula | |
\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \] |
The probability of getting \(k\) heads when flipping \(n\) coins is | |
\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] |
An Identity of Ramanujan | |
\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] |
A Rogers-Ramanujan Identity | |
\[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}. \] |
Maxwell's Equations | |
\[ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} \]
|
Related links | |