
This page should merge with utf8

Tikiwiki, PHP, UTF-8 character encoding
and MySQL

What is UTF-8 and why should one use it ?

In short, UTF-8 is a character encoding that uses 1 to 3 bytes for each character.
It is one of the existing character encodings of the UCS (Universal Character Set), that contains nearly a hundred thousand abstract

characters (including ASCII characters).

UTF-8 greatly simplifies the task of internationalization by replacing multiple alternative character encoding (such as ISO8859-15
Latin-9, which encodes those English, French, German, Spanish and Portuguese characters not available in ASCII).

To learn more about UTF-8, you should read this :

The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About
Unicode and Character Sets (No Excuses!),
Wikipedia UTF-8 article,
Wikipedia Universal Character Set article

Is Tikiwiki fully UTF-8 ?

https://tiki.org/utf8
https://doc.tiki.org./i18n
https://doc.tiki.org./Character-Encoding
http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://en.wikipedia.org/wiki/Utf-8
http://en.wikipedia.org/wiki/Universal_Character_Set


In most cases, it seems to be... but the answer is : No �

Nowadays, a typical MySQL installation will create, by default, Latin1 and not UTF8 databases. And since Tikiwiki doesn't specify the
database, table, or field encodings in its installation scripts, the data sources are typically created in Latin1. So... data is stored in

Latin1 tables and not in UTF8 ones.

Good Point! - To create an installationwith a utf-8 database (as the default) see below.

Why everything seems to work and what's wrong ?

Because it's not completely impossible to have UTF8 data in Latin1 tables !

The most frequent mistake is to think that specifying encoding at the web server level (through HTTP headers) or in the HTML code
is enough. This is not so easy to understand, especially because this could work (or let you think it works) in many situations.

In fact you should also use an UTF8 database with UTF8 content. Many people are missing this part of the problem or don't even
know that their databases are not correctly configured to handle UTF8 data.

What kind of problems may I encounter if I use Latin1 tables for UTF8 data ?

As said before, some UTF8 characters use 3 bytes. Since your database server will not be aware of the real character encoding, you
may have this kind of problems :

Truncated data.

Example : If you try to store an 8 character string that contains 5 of those 3byte-UTF8 character, your data will require 18 bytes of
space and not 8 bytes. So, if you try to store this string in a database field defined to be a string with a maximum lenght of 8

characters, your string will be truncated to 8 bytes.

Wrong results from some database functions.

https://doc.tiki.org./Installation


Example : If you use functions that will count the number of characters in the string or that will return a substring, you may
respectively have a total of characters greater than the what it should be, and a substring smaller than the one expected.

Ok, so... how does all this stuff work ?

There are three major components you should consider when trying to understand how encoding works for an application like
tikiwiki :

The web browser
PHP in association with a web server
The database server

THE WEB BROWSER

Browsers are able to auto-detect character encoding if nothing is specified. This is absolutely not a good thing. Consider an empty
page with just a form (FORM tag) to send data to your web application. The browser can't detect, for example, UTF8 if there is only
ASCII chars in your page (remember that UTF8 characters that are already available as ASCII chars are stored in only one byte, as if

UTF8 was not used).

This bad feature exists only because web browsers are designed to work with most content, including those created by people that
forgot to specify the encoding or even don't really know what it is.

HOW TO SET UTF-8 AS YOUR DEFAULT ENCODING

In the case of an (X)HTML or XML page generated by PHP, there is multiple way to specify the encoding to the browser :

asking the web server to send an appropriate HTTP header to the browser, which can be done



either by using the php "header" native function in the application code (1), or by setting up the
web server to send this header (2) :

(1) header('Content-Type: text/html; charset=utf-8');
(2) directive for Apache (to be placed, for example, in httpd.conf or .htaccess files) : AddDefaultCharset UTF-8

using XML or HTML tags :

(3) HTML tag : <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
(4) XML tag : <?xml version="1.0" encoding="utf-8"?>

There is not only one method because :

(1) is useful if you are neither generating HTML or XML code (e.g. plain text output), nor able to
modify the web server configuration (e.g. not allowed by the server admin),
(2) is useful if you are neither generating HTML or XML code, nor using a programming language
such as PHP,
(3) is useful if you are not using PHP (e.g. static files) and have no way to modify the web server
configuration,
(4) is useful if you want to be XML or XHTML compliant (see XHTML 1.0 specification)

Since Tikiwiki should be at least XHTML 1.0 compliant, both (3) and (4) should be used. It is a good idea to use (1) and (2) too,
because we have static and dynamic non-(X)HTML and non-XML pages. Note that HTTP headers are used in priority if they are

different from HTML meta tag.

Now that the browser knows the encoding of the web server output and input, let's talk about the two other components...

http://www.w3.org/TR/xhtml1/#C_9


PHP IN ASSOCIATION WITH A WEB SERVER

PHP doesn't handle UTF-8 natively (until PHP6), this is why you should use php mbstring extensions.
There is no need to use mb* functions if you enable the mbstring functions overloading (see "Function Overloading Feature" in php

mbstring extensions documentation).

(There is also a possibility to set default_charset = "utf8" in the php.ini configuration file. Comments in this file explains that : "As of
4.0b4, PHP always outputs a character encoding by default in the Content-type: header. To disable sending of the charset, simply

set it to be empty." )

Configuration example :

default_charset = UTF-8

mbstring.language = Neutral
mbstring.internal_encoding = UTF-8
mbstring.encoding_translation = On

mbstring.http_input = UTF-8
mbstring.http_output = UTF-8
mbstring.detect_order = auto

mbstring.substitute_character = none

mbstring.func_overload = 0

Note(2010-06-22): mbstring.func_overload must be set to 0 to have the plugin parsing working creectly - Whne the bug will be
repaired the best value will be 7

If you don't have access to the server's php.ini configuration file, you can use this syntax in .htaccess files :

php_value mbstring.language "Neutral"

http://php.net/mbstring


php_value mbstring.internal_encoding "UTF-8"

...

( Note that tikiwiki source code also need an encoding. Most of the developpers didn't have to worry about that since only the
translations files contains non-english words (i.e. ASCII characters). The good news is that tikiwiki translation files

(lang/*/language.php) are already in UTF-8 � )

THE DATABASE SERVER (MYSQL IN THIS ARTICLE)

First of all, only MySQL at version 4.1 or more supports Unicode (see MySQL documentation).

MySQL is configured to communicate with "clients". PHP (through it's mysql extensions) is one of them.
An encoding is used for the data exchange between MySQL and it's clients. MySQL is able to convert it's data on-the-fly to or from

another encoding, this is why this encoding is not absolutely the same as the database's one.

There is two ways to specify this encoding :

(1) by forcing MySQL to always use the same encoding for all clients,
(2) by setting up the client to send this information

(1) is done by adding the following lines in your MySQL configuration file (/etc/mysql/my.cnf on Debian GNU/Linux) :

[client] default-character-set = utf8

(2) this should be done by sending this query to the database :

SET NAMES 'UTF8';

http://dev.mysql.com/doc/refman/4.1/en/charset-unicode.html


Unfortunately, this is not completely functionnal in practice and this is a known problem �

In fact, for the solution (1), PHP mysql extension doesn't read the /etc/mysql/my.cnf file and don't use the specified encoding. In
order to handle this, you will need to use the mysqli (MySQL Improved) extension for PHP. By chance, this one is already useable

with Tikiwiki, because :

The API of mysqli is compatible with mysql's one,
Tikiwiki use ADOdb as the database abstraction layer, which is also able to use mysqli

This new extension has been written to be used with MySQL 4.1 or later, in order to handle the new functionnalities of this MySQL
version, including the UTF8 stuff. (For more information about MySQLi, check PHP documentation or this MySQLi overview)

To switch to mysqli extension, you need to :

check it is installed on your server (on Debian, the php5-mysql package include it),
modify your tikiwiki db/local.php file in order to set "$db_tiki='mysqli';" instead of
"$db_tiki='mysql';"

(There is also a known MySQL problem with a hardcoded limit of 1000 bytes for the database keys. Considering that keys have a
fixed size depending on the maximum size of fields they are based on, and that MySQL calculate this maximum size using the worst

case (3 bytes for all characters))

(For latin1 to UTF8 data migration, you can find articles via google � )

Another important point concerning MySQL is the encoding really used to store data. There is no need to explicitely specify the
tables or fields character set, and Tikiwiki doesn't specify anything. You only need to specify UTF8 as the whole database encoding.

This is done with a query like this :

CREATE))(( DATABASE `tikiwiki` CHARACTER SET utf8;

http://fr2.php.net/manual/en/ref.mysqli.php
http://devzone.zend.com/node/view/id/686
http://drupal.org/node/105151


(There is no need to specify collation, the default one will be based on the character set)

Just for information, if you want to change your MySQL default character set (that will be used when creating a database without
specifying character set), add this to you my.cnf configuration file :

[mysqld] default-character-set = utf8

Tip: to know the mysql setting with phpmyadmin, use the query SHOW VARIABLES LIKE 'char%';

INTERACTION BETWEEN THE THREE COMPONENTS

More precisely, when somebody ask Tikiwiki a web page through it's browser, the following steps are done :

Step 1: the browser send an HTTP request (i.e. GET or POST) to ask the page at the web server
hosting Tikiwiki,
Step 2: the server ask PHP to generate the page,
Step 3: PHP interprets the source code of the page and request (if needed) the data to MySQL
using mysql*() PHP functions to send the SQL query,
Step 4: those mysql*() functions will then call specific libraries to get data from MySQL,
Step 5: MySQL executes the request and send the data to PHP through the same libraries,
Step 6: PHP generate the page (often HTML code),
Step 7: the server send the page to the browser,
Step 8: the browser display the page.

http://dev.mysql.com/doc/refman/5.0/en/charset-database.html


What about MySQL collations ?

Collations are only used to know how to sort data. That's all �

Related page at tikiwiki.org

http://tikiwiki.org/UTF-8

alias

UTF8

http://tikiwiki.org/UTF-8
https://doc.tiki.org./UTF-8
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